Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.273
Filtrar
1.
Biochemistry ; 63(4): 523-532, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38264987

RESUMO

Globin-coupled sensors constitute an important family of heme-based gas sensors, an emerging class of heme proteins. In this study, we have identified and characterized a globin-coupled sensor phosphodiesterase containing an HD-GYP domain (GCS-HD-GYP) from the human pathogen Vibrio fluvialis, which is an emerging foodborne pathogen of increasing public health concern. The amino acid sequence encoded by the AL536_01530 gene from V. fluvialis indicated the presence of an N-terminal globin domain and a C-terminal HD-GYP domain, with HD-GYP domains shown previously to display phosphodiesterase activity toward bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates numerous important physiological functions in bacteria, including in bacterial pathogens. Optical absorption spectral properties of GCS-HD-GYP were found to be similar to those of myoglobin and hemoglobin and of other bacterial globin-coupled sensors. The binding of O2 to the Fe(II) heme iron complex of GCS-HD-GYP promoted the catalysis of the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas CO and NO binding did not enhance the catalysis, indicating a strict discrimination of these gaseous ligands. These results shed new light on the molecular mechanism of gas-selective catalytic regulation by globin-coupled sensors, with these advances apt to lead to a better understanding of the family of globin-coupled sensors, a still growing family of heme-based gas sensors. In addition, given the importance of c-di-GMP in infection and virulence, our results suggested that GCS-HD-GYP could play an important role in the ability of V. fluvialis to sense O2 and NO in the context of host-pathogen interactions.


Assuntos
Globinas , Diester Fosfórico Hidrolases , Vibrio , Humanos , Diester Fosfórico Hidrolases/genética , Globinas/genética , Proteínas de Bactérias/química , Catálise , GMP Cíclico/metabolismo , Heme/química
2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279321

RESUMO

Specific sequences within RNA encoded by human genes essential for survival possess the ability to activate the RNA-dependent stress kinase PKR, resulting in phosphorylation of its substrate, eukaryotic translation initiation factor-2α (eIF2α), either to curb their mRNA translation or to enhance mRNA splicing. Thus, interferon-γ (IFNG) mRNA activates PKR through a 5'-terminal 203-nucleotide pseudoknot structure, thereby strongly downregulating its own translation and preventing a harmful hyper-inflammatory response. Tumor necrosis factor-α (TNF) pre-mRNA encodes within the 3'-untranslated region (3'-UTR) a 104-nucleotide RNA pseudoknot that activates PKR to enhance its splicing by an order of magnitude while leaving mRNA translation intact, thereby promoting effective TNF protein expression. Adult and fetal globin genes encode pre-mRNA structures that strongly activate PKR, leading to eIF2α phosphorylation that greatly enhances spliceosome assembly and splicing, yet also structures that silence PKR activation upon splicing to allow for unabated globin mRNA translation essential for life. Regulatory circuits resulting in each case from PKR activation were reviewed previously. Here, we analyze mutations within these genes created to delineate the RNA structures that activate PKR and to deconvolute their folding. Given the critical role of intragenic RNA activators of PKR in gene regulation, such mutations reveal novel potential RNA targets for human disease.


Assuntos
Precursores de RNA , RNA , Humanos , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Biossíntese de Proteínas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , RNA Mensageiro/genética , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Nucleotídeos/metabolismo , Globinas/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo
3.
Br J Haematol ; 204(2): 399-401, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37985143

RESUMO

The genetic underpinnings of beta-thalassaemia encompass a myriad of molecular mechanisms. The ability of synonymous mutations, an often-overlooked category of variants, to influence ß-globin expression and phenotypic disease is highlighted by this report by Gorivale et al. Commentary on: Gorivale et al. When a synonymous mutation breaks the silence in a thalassaemia patient. Br J Haematol 2024;204:677-682.


Assuntos
Talassemia , Talassemia beta , Humanos , Mutação Silenciosa , Mutação , Talassemia beta/genética , Globinas beta/genética , Globinas/genética
4.
Blood Cells Mol Dis ; 104: 102761, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271682

RESUMO

ß-Thalassemia is a genetic form of anemia due to mutations in the ß-globin gene, that leads to ineffective and extramedullary erythropoiesis, abnormal red blood cells and secondary iron-overload. The severity of the disease ranges from mild to lethal anemia based on the residual levels of globins production. Despite being a monogenic disorder, the pathophysiology of ß-thalassemia is multifactorial, with different players contributing to the severity of anemia and secondary complications. As a result, the identification of effective therapeutic strategies is complex, and the treatment of patients is still suboptimal. For these reasons, several models have been developed in the last decades to provide experimental tools for the study of the disease, including erythroid cell lines, cultures of primary erythroid cells and transgenic animals. Years of research enabled the optimization of these models and led to decipher the mechanisms responsible for globins deregulation and ineffective erythropoiesis in thalassemia, to unravel the role of iron homeostasis in the disease and to identify and validate novel therapeutic targets and agents. Examples of successful outcomes of these analyses include iron restricting agents, currently tested in the clinics, several gene therapy vectors, one of which was recently approved for the treatment of most severe patients, and a promising gene editing strategy, that has been shown to be effective in a clinical trial. This review provides an overview of the available models, discusses pros and cons, and the key findings obtained from their study.


Assuntos
Talassemia beta , Animais , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Eritropoese/genética , Ferro/metabolismo , Globinas/genética , Modelos Animais de Doenças
5.
J Inorg Biochem ; 250: 112405, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977965

RESUMO

The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.


Assuntos
Globinas , Células Estreladas do Fígado , Animais , Camundongos , Citoglobina/genética , Citoglobina/metabolismo , Citoglobina/farmacologia , Perfilação da Expressão Gênica , Globinas/genética , Globinas/metabolismo , Células Estreladas do Fígado/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Transcriptoma
6.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958992

RESUMO

Globins have been studied as model proteins to elucidate the principles of protein evolution. This was achieved by understanding the relationship between amino acid sequence, three-dimensional structure, physicochemical properties, and physiological function. Previous molecular phylogenies of chordate globin genes revealed the monophyletic evolution of urochordate globins and suggested convergent evolution. However, to provide evidence of convergent evolution, it is necessary to determine the physicochemical and functional similarities between vertebrates and urochordate globins. In this study, we determined the expression patterns of Ciona globin genes using real-time RT-PCR. Two genes (Gb-1 and Gb-2) were predominantly expressed in the branchial sac, heart, and hemocytes and were induced under hypoxia. Combined with the sequence analysis, our findings suggest that Gb-1/-2 correspond to vertebrate hemoglobin-α/-ß. However, we did not find a robust similarity between Gb-3, Gb-4, and vertebrate globins. These results suggested that, even though Ciona globins obtained their unique functions differently from vertebrate globins, the two of them shared some physicochemical features and physiological functions. Our findings offer a good example for understanding the molecular mechanisms underlying gene co-option and convergence, which could lead to evolutionary innovations.


Assuntos
Ciona intestinalis , Anfioxos , Animais , Humanos , Globinas/genética , Ciona intestinalis/genética , Anfioxos/genética , Vertebrados/genética , Sequência de Aminoácidos , Família Multigênica , Filogenia , Evolução Molecular
7.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119558, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37549740

RESUMO

Cytoglobin (Cygb) is an evolutionary ancient heme protein with yet unclear physiological function(s). Mammalian Cygb is ubiquitously expressed in all tissues and is proposed to be involved in reactive oxygen species (ROS) detoxification, nitric oxide (NO) metabolism and lipid-based signaling processes. Loss-of-function studies in mouse associate Cygb with apoptosis, inflammation, fibrosis, cardiovascular dysfunction or oncogenesis. In zebrafish (Danio rerio), two cygb genes exist, cytoglobin 1 (cygb1) and cytoglobin 2 (cygb2). Both have different coordination states and distinct expression sites within zebrafish tissues. The biological roles of the cygb paralogs are largely uncharacterized. We used a CRISPR/Cas9 genome editing approach and generated a knockout of the penta-coordinated cygb1 for in vivo analysis. Adult male cygb1 knockouts develop phenotypic abnormalities, including weight loss. To identify the molecular mechanisms underlying the occurrence of these phenotypes and differentiate between function and effect of the knockout we compared the transcriptomes of cygb1 knockout at different ages to age-matched wild-type zebrafish. We found that immune regulatory and cell cycle regulatory transcripts (e.g. tp53) were up-regulated in the cygb1 knockout liver. Additionally, the expression of transcripts involved in lipid metabolism and transport, the antioxidative defense and iron homeostasis was affected in the cygb1 knockout. Cygb1 may function as an anti-inflammatory and cytoprotective factor in zebrafish liver, and may be involved in lipid-, iron-, and ROS-dependent signaling.


Assuntos
Globinas , Peixe-Zebra , Masculino , Camundongos , Animais , Citoglobina/genética , Citoglobina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Globinas/genética , Globinas/metabolismo , Metabolismo dos Lipídeos/genética , Espécies Reativas de Oxigênio , Estresse Oxidativo/genética , Homeostase/genética , Lipídeos , Mamíferos/metabolismo
8.
Redox Biol ; 65: 102838, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573836

RESUMO

Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.


Assuntos
Globinas , Proteína HMGB2 , Animais , Camundongos , Citoglobina/genética , Dano ao DNA , Globinas/genética , Globinas/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Fatores de Transcrição/genética
9.
Biochemistry ; 62(18): 2727-2737, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37647623

RESUMO

Proteins have undergone evolutionary processes to achieve optimal stability, increased functionality, and novel functions. Comparative analysis of existent and ancestral proteins provides insights into the factors that influence protein stability and function. Ancestral sequence reconstruction allows us to deduce the amino acid sequences of ancestral proteins. Here, we present the structural and functional characteristics of an ancestral protein, AncMH, reconstructed to be the last common ancestor of hemoglobins and myoglobins. Our findings reveal that AncMH harbors heme and that the heme binds oxygen. Furthermore, we demonstrate that the ferrous heme in AncMH is pentacoordinated, similar to that of human adult hemoglobin and horse myoglobin. A detailed comparison of the heme pocket structure indicates that the heme pocket in AncMH is more similar to that of hemoglobin than that of myoglobin. However, the autoxidation of AncMH is faster than that of both hemoglobin and myoglobin. Collectively, our results suggest that ancestral proteins of hemoglobins and myoglobins evolved in steps, including the hexa- to pentacoordination transition, followed by stabilization of the oxygen-bound form.


Assuntos
Globinas , Heme , Adulto , Humanos , Animais , Cavalos , Globinas/genética , Mioglobina/genética , Sequência de Aminoácidos , Oxigênio
10.
PLoS Genet ; 19(5): e1010727, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216374

RESUMO

We report three novel deletions involving the Multispecies Conserved Sequences (MCS) R2, also known as the Major Regulative Element (MRE), in patients showing the α-thalassemia phenotype. The three new rearrangements showed peculiar positions of the breakpoints. 1) The (αα)ES is a telomeric 110 kb deletion ending inside the MCS-R3 element. 2) The (αα)FG, 984 bp-long, ends 51 bp upstream to MCS-R2; both are associated with a severe α-thalassemia phenotype. 3) The (αα)CT, 5058 bp-long starts at position +93 of MCS-R2 and is the only one associated to a mild α-thalassemia phenotype. To understand the specific role of different segments of the MCS-R2 element and of its boundary regions we carried out transcriptional and expression analysis. Transcriptional analysis of patients' reticulocytes showed that (αα)ES was unable to produce α2-globin mRNA, while a high level of expression of the α2-globin genes (56%) was detected in (αα)CT deletion, characterized by the presence of the first 93 bp of MCS-R2. Expression analysis of constructs containing breakpoints and boundary regions of the deletions (αα)CT and (αα)FG, showed comparable activity both for MCS-R2 and the boundary region (-682/-8). Considering that the (αα)CT deletion, almost entirely removing MCS-R2, has a less severe phenotype than the (αα)FG α0thalassemia deletion, removing both MCS-R2 almost entirely and an upstream 679 bp, we infer for the first time that an enhancer element must exist in this region that helps to increase the expression of the α-globin genes. The genotype-phenotype relationship of other previously published MCS-R2 deletions strengthened our hypothesis.


Assuntos
Talassemia alfa , Humanos , Talassemia alfa/genética , Globinas/genética , Fenótipo , Sequência Conservada , Elementos Facilitadores Genéticos/genética , Genótipo
11.
Methods Mol Biol ; 2648: 167-185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37039991

RESUMO

Androglobin (ADGB), the most recently identified member of the mammalian globin family, is a chimeric protein with an unusual, embedded globin domain that is circularly permutated and exhibits hallmarks of a hexacoordinated heme-binding scheme. Whereas abundant expression of ADGB was initially found to be mainly restricted to cells in the postmeiotic stages of spermatogenesis, more recent RNA-Seq-based expression analysis data revealed that ADGB is detectable in cells carrying motile cilia or flagella. This very tight regulation of ADGB gene expression urges the need for alternative techniques to study endogenous expression in classical mammalian cell models, which do not express ADGB. We describe here the use of CRISPR activation (CRISPRa) technology to induce endogenous ADGB gene expression in HEK293T, MCF-7, and HeLa cells from its promoter and illustrate how this method can be employed to validate putative regulatory DNA elements of ADGB in promoter and enhancer regions.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação da Expressão Gênica , Masculino , Humanos , Células HeLa , Células HEK293 , Globinas/genética , Globinas/metabolismo
12.
Neurosci Bull ; 39(10): 1481-1496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36884214

RESUMO

The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.


Assuntos
Anemia , Globinas , Ratos , Animais , Neuroglobina/metabolismo , Globinas/genética , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Hipóxia/metabolismo , Encéfalo/metabolismo , Oxigênio , Anemia/metabolismo , Adenosina Trifosfatases/metabolismo
13.
Int J Lab Hematol ; 45(1): 90-95, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36054783

RESUMO

INTRODUCTION: Though an increase in Hb A2 is one of the most key markers of ß-thal carriers, a few independent cases are reported to show elevated Hb A2 levels caused by mutations in other genes beyond ß-globin gene. METHODS: We reviewed the haematological indices of 47336 individuals to analyse the phenotype-genotype correlation and identified 1439 individuals (3.04%) positive in the elevation of Hb A2 . Globin and KLF1 genes analysis was performed, and further whole-exome sequencing was carried to dissect the genetic causes of those positive samples without ß-thalassemic or KLF1 mutations. RESULTS: Of these 1439 individuals with elevated Hb A2 , 1381 had a molecular defect in globin genes, and most were ß-thalassemic mutation; 10 had a molecular defect in KLF1 gene. Finally, among the 38 individuals without ß-thalassemic or KLF1 mutations, 7 were identified to carried a loss-of-function mutation in SUPT5H. CONCLUSION: This study has provided a mutation spectrum of SUPT5H in a cohort screening leading to the elevation of Hb A2 . According to the previous observations that individuals with a combination of ß-thal mutation and a SUPT5H variant might present moderate ß-thaelassemia, these findings emphasized the importance of comprehensive molecular diagnosis to prevent birth defects of ß-thaelassemia caused by rare mutations from modifier genes.


Assuntos
Hemoglobina A2 , Talassemia beta , Humanos , Sequenciamento do Exoma , Hemoglobina A2/genética , Hemoglobina A2/análise , Mutação , Heterozigoto , Globinas/genética , Talassemia beta/diagnóstico , Talassemia beta/genética , Genótipo , Proteínas Nucleares/genética , Fatores de Elongação da Transcrição/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-36566682

RESUMO

Studies on the globin family are continuously revealing insights into the mechanisms of gene and protein evolution. The rise of a new globin gene type in Pelobatoidea and Neobatrachia (Amphibia:Anura) from an α-globin precursor provides the opportunity to investigate the genetic and physical mechanisms underlying the origin of new protein structural and functional properties. This amphibian-specific globin (globin A/GbA) discovered in the heart of Rana catesbeiana is a monomer. As the ancestral oligomeric state of α-globins is a homodimer, we inferred that the ancestral state was lost somewhere in the GbA lineage. Here, we combined computational molecular evolution with structural bioinformatics to determine the extent to which the loss of the homodimeric state is pervasive in the GbA clade. We also characterized the loci of GbA genes in Bufo bufo. We found two GbA clades in Neobatrachia. One was deleted in Ranidae, but retained and expanded to yield a new globin cluster in Bufonidae species. Loss of the ancestral oligomeric state seems to be pervasive in the GbA clade. However, a taxonomic sampling that includes more Pelobatoidea, as well as early Neobatrachia, lineages would be necessary to determine the oligomeric state of the last common ancestor of all GbA. The evidence presented here points out a possible loss of oligomerization in Pelobatoidea GbA as a result of amino acid substitutions that weaken the homodimeric state. In contrast, the loss of oligomerization in both Neobatrachia GbA clades was linked to independent deletions that disrupted many packing contacts at the homodimer interface.


Assuntos
Evolução Molecular , Globinas , Animais , Globinas/genética , Filogenia , Anfíbios/genética
15.
Nat Commun ; 13(1): 6641, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333299

RESUMO

Determining the mechanisms by which genes are switched on and off during development is a key aim of current biomedical research. Gene transcription has been widely observed to occur in a discontinuous fashion, with short bursts of activity interspersed with periods of inactivity. It is currently not known if or how this dynamic behaviour changes as mammalian cells differentiate. To investigate this, using an on-microscope analysis, we monitored mouse α-globin transcription in live cells throughout erythropoiesis. We find that changes in the overall levels of α-globin transcription are most closely associated with changes in the fraction of time a gene spends in the active transcriptional state. We identify differences in the patterns of transcriptional bursting throughout differentiation, with maximal transcriptional activity occurring in the mid-phase of differentiation. Early in differentiation, we observe increased fluctuation in transcriptional activity whereas at the peak of gene expression, in early erythroblasts, transcription is relatively stable. Later during differentiation as α-globin expression declines, we again observe more variability in transcription within individual cells. We propose that the observed changes in transcriptional behaviour may reflect changes in the stability of active transcriptional compartments as gene expression is regulated during differentiation.


Assuntos
Eritroblastos , Eritropoese , Camundongos , Animais , Eritroblastos/metabolismo , Diferenciação Celular/genética , Eritropoese/genética , Cromatina/metabolismo , alfa-Globinas/genética , alfa-Globinas/metabolismo , Transcrição Gênica , Globinas/genética , Mamíferos/genética
16.
Front Endocrinol (Lausanne) ; 13: 942447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204111

RESUMO

Background: In China, numerous human sperm banks only perform three-generation family history evaluation to exclude genetic diseases with clinical symptoms; therefore, many inherited risks cannot be detected before donor qualification even when a thorough genetic family history evaluation has been performed. Hence, the risk of recessive disease inheritance persists with the current eligibility guidelines in China regarding the donor selection process. Methods: Retrospective study that reviewed the genetic test analyses and clinical outcomes of young adult men who were qualified sperm donors at the Hunan Province Human Sperm Bank of China from January 1, 2018, to May 1, 2021. We included a total of 3231 qualified sperm donors: all donors underwent primary screening for thalassemia and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Whereafter, 278 of donors underwent genetic testing for specific genes, and 43 donors underwent whole exome sequencing. Results: 2.4% of 3231 qualified sperm donors might have thalassemia and 1.4% might have G6PD deficiency. Sperm donors with thalassemia and G6PD deficiency would be eliminated. Specific gene testing identified 7 of the 278 donors (2.5%) as carriers of at least one pathogenic or likely pathogenic variant in a gene, including 1.9% of 154 donors (3/154) as carrier variants in α-Like or ß-Like globin genes, 17.6% of 17 donors (3/17) as carrier variants in GJB2, 12.5% of 8 donors (1/8) as carrier variants in SMN1. In addition, among the 43 sperm donors carrying the 111 pathogenic/likely pathogenic variants, eight (18.6%) were carriers of pathogenic variants of the GJB2 gene. The frequency, therefore, was approximately 1 in 5. Conclusions: The data suggest that used blood routine and RDT can make a preliminary screening of sperm donors, and special gene testing should be performed for sperm donors according to the regional incidence of specific genetic diseases. Meanwhile, whole exome sequencing can be used as a supplementary application in sperm donor genetic testing, and aid a successful and healthy pregnancy. However, industry guidelines must be modified to incorporate its use.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Talassemia , Feminino , Testes Genéticos , Globinas/genética , Glucosefosfato Desidrogenase , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Masculino , Gravidez , Estudos Retrospectivos , Sêmen , Bancos de Esperma , Espermatozoides , Talassemia/epidemiologia , Talassemia/genética , Adulto Jovem
17.
Biochemistry (Mosc) ; 87(9): 1035-1049, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180994

RESUMO

The review is devoted to the patterns of evolution of α- and ß-globin gene domains. A hypothesis is presented according to which segregation of the ancestral cluster of α/ß-globin genes in Amniota occurred due to the performance by α-globins and ß-globins of non-canonical functions not related to oxygen transport.


Assuntos
Evolução Molecular , Globinas beta , Animais , Globinas/genética , Família Multigênica , Oxigênio , Filogenia , Vertebrados/genética , alfa-Globinas/genética , Globinas beta/genética
18.
Dtsch Med Wochenschr ; 147(19): 1250-1261, 2022 09.
Artigo em Alemão | MEDLINE | ID: mdl-36126923

RESUMO

Thalassemias are a heterogeneous group of genetic diseases based on a quantitative disorder of globin chain synthesis. They are among the most frequent monogenic hereditary diseases worldwide. Migration during recent years led to a profoundly increasing number of patients in countries where the indigenous population has not been affected. The complex treatment of the patients represents a medical and socioeconomic challenge with the need for structured interdisciplinary clinical care and close collaboration among healthcare providers, regulatory authorities, and health care insurance companies. The following article provides an overview of the causes, pathogenesis, clinical presentation, and treatment of alpha- and beta-thalassemias.


Assuntos
Talassemia , Talassemia beta , Globinas/genética , Humanos , Talassemia beta/diagnóstico , Talassemia beta/genética , Talassemia beta/terapia
19.
Arch Microbiol ; 204(8): 493, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841431

RESUMO

Globin (Gb) domains function in sensing gaseous ligands like oxygen and nitric oxide. In recent years, Gb domain containing heme binding adenylate cyclases (OsAC or GbAC) emerged as significant modulator of Leishmania response to hypoxia and oxidative stress. During progression of life cycle stages, kinetoplastids experience altered condition in insect vectors or other hosts. Moreover, marked diversity in life style has been accounted among kinetoplastids. Distribution and abundance of Gb-domains vary between different groups of kinetoplastids. While in bodonoids, Gbs are not combined with any other functional domains, in trypanosomatids it is either fused with adenylate cyclase (AC) or oxidoreductase (OxR) domains. In salivarian trypanosomatids and Leishmania (Viannia) subtypes, no gene product featuring Gbs can be identified. In this context, evolution of Gb-domains in kinetoplastids was explored. GbOxR derived Gbs clustered with bacterial flavohemoglobins (fHb) including one fHb from Advenella, an endosymbiont of monoxeneous trypanosomatids. Codon adaptation and other evolutionary analysis suggested that OsAC (LmjF.28.0090), the solitary Gb-domain featuring gene product in Leishmania, was acquired via possible horizontal gene transfer. Substantial functional divergence was estimated between orthologues of genes encoding GbAC or GbOxR; an observation also reflected in structural alignment and heme-binding residue predictions. Orthologue-paralogue and synteny analysis indicated genomic reduction in GbOxR and GbAC loci for dixeneous trypanosomatids.


Assuntos
Transferência Genética Horizontal , Globinas , Sequência de Aminoácidos , Códon , Globinas/química , Globinas/genética , Globinas/metabolismo , Heme/química , Heme/metabolismo , Filogenia
20.
Biomed Res Int ; 2022: 8263373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898686

RESUMO

Neuroglobin is an oxygen-binding heme protein expressed predominantly in the brain. Despite many years of research, the exact distribution and expression of neuroglobin in the neocortical development and under mild hypoxia stress still remain unclear. Therefore, we aim to explore the expression of neuroglobin during neocortex expansion and under mild hypoxia stress in vivo. We used Kunming mice to examine the expression of Ngb protein during neocortex expansion. In addition, we analyzed the density of Ngb-positive neural stem cells using the Image-Pro PLUS (v.6) computer software program (Media Cybernetics, Inc.). Our data indicated that the density of the neuroglobin-positive neurons in mice cerebral cortex displayed a downward trend after birth compared with high expression of neuroglobin in a prenatal period. Similarly, we identified that neurons were capable of ascending neuroglobin levels in response to mild hypoxic stress compared with the no intervention group. These findings suggest that neuroglobin behaves as a compensatory protein regulating oxygen provision in the process of neocortical development or under physiological hypoxia, further contributing to the discovery of novel therapeutic methods for neurological disorders, which is clinically important.


Assuntos
Globinas , Proteínas do Tecido Nervoso , Animais , Encéfalo/metabolismo , Globinas/genética , Globinas/metabolismo , Hipóxia/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina/metabolismo , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...